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Rare and low-frequency coding variants 
alter human adult height
A full list of authors and affiliations appears in the online version of the paper. 

Human height is a highly heritable, polygenic trait1,2. The contri-
bution of common DNA sequence variation to inter-individual 
 differences in adult height has been systematically evaluated through 
genome-wide association studies (GWAS). This approach has thus 
far  identified 697 independent variants located within 423 loci that 
together explain around 20% of the heritability of height3. As is typical 
of complex traits and diseases, most of the alleles that affect height 
that have been  discovered so far are common (with a minor allele 
 frequency (MAF) >  5%) and are mainly located outside coding regions, 
complicating the identification of the relevant genes or functional  
variants. Identifying coding variants associated with a complex trait 
in new or known loci has the potential to help pinpoint causal genes. 
Furthermore, the extent to which rare (MAF <  1%) and low-frequency 
(1% <  MAF ≤  5%) coding variants also influence complex traits and 
diseases remains an open question. Many recent DNA sequencing 
studies have identified only a few of these variants4–8, but this limited 
success could be due to their modest sample size9. Some studies have 
suggested that common sequence variants may explain the majority of 
the heritable variation in adult height10. It is therefore timely to assess 
whether and to what extent rare and low-frequency coding variations 
contribute to the genetic landscape of this model polygenic trait.

In this study, we used an ExomeChip11 to test the association between 
241,453 variants (of which 83% are coding variants with a MAF ≤  5%) 
and adult height variation in 711,428 individuals  (discovery and 
 validation sample sizes were 458,927 and 252,501, respectively). The 
ExomeChip is a genotyping array designed to query in very large  sample 
sizes coding variants identified by whole-exome DNA sequencing  
of approximately 12,000 participants. The main goals of our project 
were to determine whether rare and low-frequency coding variants 
influence the architecture of a model complex human trait (in this case, 
adult height) and to discover and characterize new genes and biological 
pathways implicated in human growth.

Coding variants associated with height
We conducted single-variant meta-analyses in a discovery sample 
of 458,927 individuals, of whom 381,625 were of European ancestry. 
We validated our association results in an independent set of 252,501 
participants. We first performed standard single-variant association 
analyses (Extended Data Figs 1–3 and Supplementary Tables 1–11; 

technical details of the discovery and validation steps are presented 
in the Methods). In total, we found 606 independent ExomeChip 
variants at array-wide significance (P <  2 ×  10−7), including 252 non- 
synonymous or splice-site variants (Methods and Supplementary 
Table 11). Focusing on non-synonymous or splice-site variants 
with a MAF <  5%, our single-variant analyses identified 32 rare and  
51 low-frequency height-associated variants (Extended Data Tables 1, 2).  
To our knowledge, these 83 height variants (MAF range of 0.1–4.8%) 
represent the largest set of validated rare and low-frequency  coding 
variants associated with any complex human trait or disease to 
date. Among these 83 variants, there are 81 missense, one nonsense  
(in CCND3 ), and one essential acceptor splice site (in ARMC5 ) variants.

We observed a strong inverse relationship between MAF and effect 
size (Fig. 1). Although power limits our capacity to find rare variants 
with small effects, we know that common variants with effect sizes 
comparable to the largest seen in our study would have been easily 
discovered by prior GWAS, but were not detected. Our results agree 
with a model based on accumulating theoretical and empirical  evidence 
that suggest that variants with strong phenotypic effects are more likely 
to be deleterious, and therefore rarer12,13. The largest effect sizes were 
observed for four rare missense variants, located in the  androgen 
receptor gene AR (NCBI single nucleotide polymorphism (SNP) 
 reference ID: rs137852591; MAF =  0.21%, Pcombined =  2.7 ×  10−14), 
in CRISPLD2  (rs148934412; MAF =  0.08%, Pcombined =  2.4 ×  10−20), 
in IHH (rs142036701, MAF =  0.08%, Pcombined =  1.9 ×  10−23), and in 
STC2  (rs148833559, MAF =  0.1%, Pcombined =  1.2 ×  10−30). Carriers 
of the rare STC2  missense variant are approximately 2.1 cm taller 
than non- carriers, whereas carriers of the remaining three variants  
(or hemizygous men that carry a rare X-linked AR allele at 
rs137852591) are approximately 2 cm shorter than non-carriers. By 
comparison, the mean effect size of common height alleles is ten times 
smaller in the same dataset. Across all 83 rare and low-frequency 
non-synonymous variants, the minor alleles were evenly distributed 
between height-increasing and height-decreasing effects (48% and 52%, 
respectively) (Fig. 1 and Extended Data Tables 1, 2).

Coding variants in new and known height loci
Many of the height-associated variants discovered in this study are 
located near common variants previously associated with height.  

Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through 
genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele 
frequencies (in the range of 0.1–4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and 
CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height-
increasing alleles of STC2 (giving an increase of 1–2 centimetres per allele) compromised proteolytic inhibition of PAPP-A 
and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 
height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological 
candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) 
involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency 
variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate 
relevant genes and pathways.
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Of the 83 rare and low-frequency non-synonymous variants, 2 low- 
frequency missense variants were previously identified (in CYTL1 and 
IL11)3,14 and 47 fell within 1 Mb of a known height signal; the  remaining 
34 define new loci. We used conditional analysis of the UK Biobank 
dataset and confirmed that 38 of these 47 variants were  independent 
of the previously described height SNPs (Supplementary Table 12). 
We validated the UK Biobank conditional results using an  orthogonal 
imputation-based methodology implemented in the full discovery 
set (Extended Data Fig. 4 and Supplementary Table 12). In  addition, 
we found a further 85 common variants and one low-frequency 
 synonymous variant (in ACHE) that define novel loci (Supplementary  
Table 12). Thus, our study identified a total of 120 new height- 
associated loci (Supplementary Table 11).

We used the UK Biobank dataset to estimate the contribution of 
the new height variants to heritability, which is h2 ≈  80% for adult 

height2. In combination, the 83 rare and low-frequency variants 
explained 1.7% of the heritability of height. The newly identified novel 
 common  variants accounted for another 2.4% and all independent 
 variants, known and novel, together explained 27.4% of heritability. By 
 comparison, the 697 known height-associated SNPs explain 23.3% of 
height heritability in the same dataset (versus the 4.1% explained by the 
new height-associated variants identified in this study). We observed 
a modest positive association between MAF and heritability for each 
variant (P =  0.012, Extended Data Fig. 5), with each common variant 
explaining slightly more heritability than rare or low-frequency variants 
(0.036% versus 0.026%, Extended Data Fig. 5).

Gene-based association results
To increase the power to find rare or low-frequency coding variants 
associated with height, we performed gene-based analyses (Methods 
and Supplementary Tables 13–15). After accounting for gene-based 
signals explained by a single variant driving the association statistics, 
we identified ten genes with P <  5 ×  10−7 that harboured more than 
one coding variant independently associated with height variation 
(Supplementary Tables 16, 17). These gene-based results remained 
 significant after conditioning on genotypes at nearby  common 
height-associated variants present on the ExomeChip (Table 1). 
Using the same gene-based tests in an independent dataset of 59,804 
 individuals genotyped on the same exome array, we replicated three 
genes at P <  0.05 (Table 1). Further evidence for replication in these 
genes was seen at the level of single variants (Supplementary Table 18).  
From the gene-based results, three genes—CSAD, NOX4 , and 
UGGT2 —are outside of the loci found by single-variant analyses and 
are implicated in human height for the first time to our knowledge.

Coding variants implicate pathways in skeletal growth
Previous pathway analyses of height loci identified by GWAS have 
highlighted gene sets related to both general biological processes 
(such as chromatin modification and regulation of embryonic 
size) and  skeletal-growth-specific pathways (such as chondrocyte 
 biology, extracellular matrix and skeletal development)3. We used 
two  different methods, DEPICT15 and PASCAL16 (see Methods), 
to  perform  pathway analyses using the ExomeChip results to test 
whether coding  variants could independently confirm the relevance 
of these  previously highlighted pathways (and further implicate spe-
cific genes in these  pathways) or identify new pathways. To compare 
the pathways  emerging from coding and non-coding variation, we 
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Figure 1 | Variants with a larger effect size on height variation tend to be 
rarer. An inverse relationship between the effect size (from the combined 
‘discovery and validation’ analysis, in centimetres on the y axis) and the 
MAF for the height variants (x axis, from 0 to 50%) can be observed. 
Included in this figure are the 606 height variants with a P <  2 ×  10−7.

Table 1 | Ten height genes implicated by gene-based testing

Gene
Discovery gene-based P value Validation  

P value*
Combined  
P value*

Conditional  
P value†

Note‡
SKAT-broad VT-broad SKAT-strict VT-strict

OSGIN1 4.3 ×  10−11 4.5 ×  10−5 0.19 0.18 0.048 2.6 ×  10−12 7.7 ×  10−11 Known locus. No predicted causal genes.

CRISPLD1 2.2 ×  10−7 6.7 ×  10−11 8.5 ×  10−6 8.9 ×  10−7 0.50 1.2 ×  10−12 NA Known locus, sentinel GWAS SNP not tested 
on ExomeChip. Predicted to be causal.

CSAD 2.3 ×  10−8 2.4 ×  10−9 0.83 0.59 0.54 2.0 ×  10−9 NA New locus.

SNED1 1.9 ×  10−5 4.3 ×  10−9 NA NA 0.083 4.5 ×  10−10 1.4 ×  10−9 Known locus. Not predicted to be causal.

G6PC 1.3 ×  10−5 3.6 ×  10−8 5.5 ×  10−6 1.3 ×  10−6 0.24 5.2 ×  10−8 3.9 ×  10−8 Known locus. Not predicted to be causal. 
Mutated in glycogen storage disease type 1a.

NOX4 5.1 ×  10−6 1.4 ×  10−7 NA NA 0.013 5.5 ×  10−9 NA New locus.

UGGT2 3.0 ×  10−5 2.6 ×  10−7 2.3 ×  10−5 4.8 ×  10−7 0.64 3.4 ×  10−7 NA New locus.

FLNB 2.2 ×  10−6 5.1 ×  10−4 2.4 ×  10−9 3.2 ×  10−6 0.016 8.6 ×  10−11 3.6 ×  10−9 Known locus. Predicted to be causal;  
mutated in atelosteogenesis type 1.

B4GALNT3 2.4 ×  10−5 1.9 ×  10−5 1.8 ×  10−5 3.1 ×  10−7 0.79 4.3 ×  10−7 7.7 ×  10−7 Known locus. Predicted to be causal.

CCDC3 6.3 ×  10−4 6.3 ×  10−6 3.0 ×  10−7 5.4 ×  10−9 0.080 1.2 ×  10−9 1.6 ×  10−9 Known locus. Predicted to be causal.
These genes meet our three criteria for statistical significance: (1) gene-based P <  5 ×  10−7; (2) the gene does not include variants with P <  2 ×  10−7; and (3) the gene-based P value is at least two 
orders of magnitude smaller than the P value for the most significant variant within the gene. For each gene, we provide P values for the four different gene-based tests applied. P values in bold are the 
most significant results for a given gene. NA, not applicable.
*Validation (n =  59,804) and combined results using the same test and (when possible) variants. 
†When the gene is located in a locus identified by our single-variant analysis (1-Mb window), we conditioned the gene-based association result on genotypes at the single variant(s). 
‡If the gene falls within a known GWAS height locus, we mention whether it was predicted to be causal using bioinformatic tools3.
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applied DEPICT separately onto exome-array-wide associated coding 
variants independent of known GWAS signals and onto non-coding 
GWAS loci,  excluding all novel height-associated genes implicated by 
coding  variants. We identified a total of 496 and 1,623 enriched gene 
sets, respectively, at a false discovery rate <  1% (Supplementary Tables 
19, 20); similar analyses with PASCAL yielded 362 and 278 enriched 
gene sets, respectively (Supplementary Tables 21, 22). Comparison 
of the results revealed a high degree of shared biology for coding 
and non- coding variants (for DEPICT, gene set P values compared 
between  coding and non-coding results had a Pearson’s r =  0.583, 
P <  2.2 ×  10−16; for PASCAL, Pearson’s r =  0.605, P <  2.2 ×  10−16). 
However, some pathways were more strongly enriched for either 
 coding or non-coding genetic variation. In general, coding variants 
more strongly implicated pathways specific to skeletal growth (such 
as extracellular matrix and bone growth), whereas GWAS signals 
highlighted more global biological processes (such as  transcription 
factor  binding and embryonic size or lethality) (Extended Data  
Fig. 6). The two  significant gene sets identified by DEPICT and PASCAL 
that uniquely implicated coding variants were the BCAN protein– 
protein interaction sub-network and the proteoglycan-binding set. 
Both of these pathways relate to the biology of proteoglycans, which 
are proteins (such as aggrecan) that contain glycosaminoglycans (such 
as chrondroitin sulfate) and that have well established connections to 
skeletal growth17.

We also investigated which height-associated genes identified by 
ExomeChip analyses were driving enrichment of pathways such as 
 proteoglycan binding. Using unsupervised clustering analysis, we 
observed that a cluster of 15 height-associated genes was strongly 
 implicated in a group of correlated pathways that include biology 
related to  proteoglycans and glycosaminoglycans (Fig. 2 and Extended 
Data Fig. 7). Seven of these 15 genes overlap a previously curated list of 
277 genes annotated in OMIM (http://omim.org/) as causing skeletal 
growth disorders3; genes in this small cluster are enriched for OMIM 
annotations relative to genes outside the cluster (odds ratio =  27.6, 
Fisher's exact P =  1.1 ×  10−5). As such, the remaining genes in this 
cluster may harbour variants that cause Mendelian growth disorders. 
Within this group are genes that are largely uncharacterized (SUSD5 ), 

have relevant biochemical functions (GLT8D2 , a glycosyltransferase 
studied mostly in the context of the liver18; LOXL4 , a lysyl oxidase 
expressed in cartilage19), modulate pathways known to affect  skeletal 
growth (FIBIN, SFRP4 )20,21 or lead to increased body length when 
knocked out in mice (SFRP4 )22.

Functional characterization of rare STC2 variants
To investigate whether the identified rare coding variants affect protein 
function, we performed in vitro functional analyses of two rare coding 
variants in a particularly compelling and novel candidate gene, STC2 . 
Overexpression of STC2  diminishes growth in mice by covalent binding 
to and inhibition of the proteinase PAPP-A, which specifically cleaves 
insulin growth factor binding protein 4 (IGFBP-4), leading to reduced 
levels of bioactive insulin-like growth factors23 (Fig. 3a). Although there 
was no prior genetic evidence implicating STC2  variation in human 
growth, the PAPPA and IGFBP4  genes have both been implicated 
in height GWAS3, and rare mutations in PAPPA2  cause severe short 
stature24, emphasizing the likely relevance of this pathway in humans. 
The two STC2  height-associated variants are rs148833559 (p.R44L, 
MAF =  0.096%, Pdiscovery =  5.7 ×  10−15) and rs146441603 (p.M86I, 
MAF =  0.14%, Pdiscovery =  2.1 ×  10−5). These rare alleles increase height 
by an average of 1.9 and 0.9 cm, respectively, suggesting that they both 
partially impair STC2 activity. In functional studies, STC2 variants with 
these amino acid substitutions were expressed at similar levels to wild-
type STC2, but showed clear, partial defects in binding to PAPP-A and 
in inhibition of PAPP-A-mediated cleavage of IGFBP-4 (Fig. 3b–d). 
Thus, the genetic analysis successfully identified rare coding alleles that 
have demonstrable and predicted functional consequences, strongly 
confirming the role of these variants and the STC2  gene in human 
growth.

Pleiotropic effects
Previous GWAS studies have reported pleiotropic or secondary effects 
on other phenotypes for many common variants associated with 
adult height3,25. Using association results from 17 human  complex 
 phenotypes for which well-powered meta-analysis results are  available, 
we investigated whether rare and low-frequency height variants are 
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Figure 2 | Heat map showing subset of DEPICT gene set enrichment 
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also pleiotropic. We found one rare and five low-frequency missense 
variants associated with at least one of the other investigated traits 
at array-wide significance (P <  2 ×  10−7) (Extended Data Fig. 8 and 
Supplementary Table 23). The minor alleles at rs77542162 (ABCA6 , 
MAF =  1.7%) and rs28929474 (SERPINA1, MAF =  1.8%) are  associated 
with increased height and increased levels of low- density lipoprotein 
(LDL) cholesterol and total cholesterol, whereas the minor allele 
at rs3208856 in CBLC (MAF =  3.4%) is associated with increased 
height, high-density lipoprotein (HDL) cholesterol and triglyceride,  
but decreased LDL cholesterol and total cholesterol levels. The 
minor allele at rs141845046 (ZBTB7B, MAF =  2.8%) was associated  
with both increased height and body mass index (BMI). The minor 
alleles at the other two missense variants associated with shorter 
 stature, rs201226914 in PIEZO1 (MAF =  0.2%) and rs35658696 in  
PAM (MAF =  4.8%), were associated with decreased glycated 
 haemoglobin (HbA1c) and increased risk of type 2 diabetes (T2D), 
respectively.

Discussion
We undertook an association study of nearly 200,000 coding variants 
in 711,428 individuals, and identified 32 rare and 51 low-frequency 

coding variants associated with adult height. Furthermore, gene-based 
testing discovered 10 genes that harbour several additional rare or 
low-frequency variants associated with height, including three genes 
(CSAD, NOX4  and UGGT2 ) in loci not previously implicated in height. 
Given the design of the ExomeChip, which did not consider variants 
with a MAF <  0.004% (corresponding to approximately one allele in 
12,000 participants), our gene-based association results do not rule out 
the possibility that additional genes with such rarer coding  variants 
also contribute to height variation; deep DNA sequencing in very 
large sample sizes will be required to address this question. In total, 
our results highlight 89 genes (10 from gene-based testing and 79 from 
single-variant analyses (4 genes have 2 independent coding variants)) 
that are likely to modulate human growth, and 24 alleles segregating 
in the general population that affect height by more than 1 cm (Table 1  
and Extended Data Tables 1, 2). The rare and low-frequency coding 
variants explain 1.7% of the heritable variation in adult height. When 
considering all rare, low-frequency and common height-associated 
variants validated in this study, we can now explain 27.4% of the  
heritability of height.

Our analyses revealed many coding variants in genes mutated 
in monogenic skeletal growth disorders, confirming the presence 
of allelic series (from familial penetrant mutations to mild effect 
 common  variants) in the same genes for related growth phenotypes 
in humans. We used gene-set-enrichment-type analyses to demon-
strate the functional connectivity between the genes that harbour 
coding height variants, highlighting both known and novel biological 
pathways that regulate height in humans (Fig. 2, Extended Data Fig. 7  
and Supplementary Tables 19–22), and implicating genes such as 
SUSD5 , GLT8D2 , LOXL4 , FIBIN and SFRP4  that have not been 
 previously connected with skeletal growth. Additional  noteworthy 
height candidate genes include NOX4 , ADAMTS3 , ADAMTS6 , 
PTH1R and IL11RA (Extended Data Tables 1, 2 and Supplementary 
Tables 17, 24). NOX4 , identified through gene-based testing, encodes 
NADPH oxidase 4, an enzyme that produces reactive oxygen species, 
a biological pathway not previously implicated in human growth. 
Nox4 −/− mice display higher bone density and a reduced number of 
osteoclasts, a cell type that is essential for bone repair, maintenance and 
remodelling12. We also found rare coding variants in ADAMTS3  and 
ADAMTS6 , genes that encode metalloproteinases that belong to the 
same family as several other human growth syndromic genes (such as 
ADAMTS2 , ADAMTS10  and ADAMTSL2 ). Moreover, we discovered a 
rare missense variant in PTH1R that encodes a receptor for para thyroid 
hormone; parathyroid hormone–PTH1R signalling is important for 
bone resorption, and mutations in PTH1R cause chondrodysplasia  
in humans26. Finally, we replicated the association between a low- 
frequency missense variant in the cytokine gene IL11, but also found 
a low-frequency missense variant in the gene encoding its receptor, 
IL11RA. The IL11–IL11RA axis has been shown to play an important 
role in bone formation in the mouse27,28. Thus, our data confirm that 
this signalling cascade is also relevant in human growth.

Overall, our findings provide strong evidence that rare and low- 
frequency coding variants contribute to the genetic architecture of 
height, a model complex human trait. This conclusion has implica-
tions for the prediction of complex human phenotypes in the  context 
of precision medicine initiatives. Although rare, large effect-size 
variants might not explain most of the heritable disease risk at the 
population level, they are important for predicting the risk of disease 
development for the individuals that carry them. Our findings also 
seem to contrast markedly with results from the recent large-scale T2D 
association study, which found only six variants with a MAF <  5%  
(ref. 29.). This apparent difference could be explained simply by the 
large difference in sample sizes between the two studies (711,428 for 
height versus 127,145 for T2D). When we consider the fraction of 
associated variants with a MAF <  5% among all confirmed variants 
for height and T2D, we find that it is similar (9.7% for height versus 
7.1% for T2D). This supports the strong probability that rarer T2D 
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devoid of proteolytic activity towards IGFBP-4. Under similar conditions, 
incubation with variants R44L or M86I appeared to cause a lesser degree 
of covalent complex formation with PAPP-A. The gels are representative of 
at least three independent experiments. d, PAPP-A proteolytic cleavage of 
IGFBP-4 following incubation with wild-type STC2 or variants for 1–24 h. 
Wild-type STC2 causes reduction in PAPP-A activity, with complete 
inhibition of activity following a 24-h incubation. Both STC2 variants 
show increased IGFBP-4 cleavage (that is, less inhibition) for all time 
points analysed. Mean ±  s.d. of three independent experiments are shown. 
One-way repeated measures analysis of variance followed by Dunnett’s 
post-test showed significant differences between STC2 wild-type and 
variants R44L (P <  0.001) and M86I (P <  0.01).

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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alleles and, more generally, rarer alleles for other polygenic diseases and 
traits will be uncovered as sample sizes continue to increase.
Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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METHODS
Study design and participants. The discovery cohort consisted of 147 studies 
comprising 458,927 adult individuals of the following ancestries: (1) European 
descent (n =  381,625); (2) African (n =  27,494); (3) South Asian (n =  29,591); (4) 
East Asian (n =  8,767); (5) Hispanic (n =  10,776) and (6) Saudi Arabian (n =  695). 
All participating institutions and coordinating centres approved this project, and 
informed consent was obtained from all subjects. Discovery meta-analysis was 
carried out in each ancestry group (except the Saudi Arabian) separately as well as 
in the All group. Validation was undertaken in individuals of European ancestry 
only (Supplementary Tables 1–3). Conditional analyses were undertaken only in 
the European descent group (106 studies, n =  381,625). The SNPs we identify are 
available from the NCBI dbSNP database of short genetic variations (https://www.
ncbi.nlm.nih.gov/projects/SNP/). No statistical methods were used to predeter-
mine sample size. The experiments were not randomized and the investigators were 
not blinded to allocation during experiments and outcome assessment.
Phenotype. Height (in centimetres) was corrected for age and the genomic 
 principal components (derived from GWAS data, the variants with a MAF >  1% 
on ExomeChip (http://genome.sph.umich.edu/wiki/Exome_Chip_Design), 
or  ancestry-informative markers available on the ExomeChip), as well as any 
 additional study-specific covariates (for example, recruiting centre), in a  linear 
regression model. For studies with non-related individuals, residuals were 
 calculated separately by sex, whereas for family-based studies sex was included 
as a covariate in the model. Additionally, residuals for case/control studies 
were  calculated separately. Finally, residuals were subject to inverse normal 
 transformation.
Genotype calling. The majority of studies followed a standardized protocol and 
performed genotype calling using the designated manufacturer’s software, which 
was then followed by zCall30. For ten studies participating in the Cohorts for Heart 
and Aging Research in Genomic Epidemiology (CHARGE) Consortium, the raw 
intensity data for the samples from seven genotyping centres were assembled into 
a single project for joint calling11. Study-specific quality-control measures of the 
genotyped variants was implemented before association analysis (Supplementary 
Tables 1–2).
Study-level statistical analyses. Individual cohorts were analysed separately for each 
ancestry population, with either RAREMETALWORKER (http://genome.sph.umich.
edu/wiki/RAREMETALWORKER) or RVTEST (http://zhanxw.github.io/rvtests/), to 
associate inverse normal transformed height data with genotype data taking potential 
cryptic relatedness (kinship matrix) into account in a  linear mixed model. These soft-
ware are designed to perform score-statistics based rare-variant association analysis, 
can accommodate both unrelated and related individuals, and provide single-variant 
results and variance-covariance matrix. The  covariance matrix captures linkage dis-
equilibrium relationships between markers within 1 Mb, which is used for gene-level 
meta-analyses and conditional analyses31. Single-variant analyses were performed 
for both additive and recessive models (for the alternate allele).
Centralized quality control. The individual study data were investigated for 
 potential existence of ancestry population outliers based on the 1000 Genome 
Project phase 1 ancestry reference populations. A centralized quality control 
 procedure implemented in EasyQC32 was applied to individual study association 
summary statistics to identify outlying studies: (1) assessment of possible problems 
in height transformation; (2) comparison of allele frequency alignment against 1000 
Genomes Project phase 1 reference data to pinpoint any potential strand issues; 
and (3) examination of quantile–quantile plots per study to identify any problems 
arising from population stratification, cryptic relatedness and  genotype biases. 
We excluded variants if they had a call rate < 95%, Hardy–Weinberg  equilibrium 
P <  1 ×  10−7, or large allele frequency deviations from reference  populations  
(> 0.6 for all ancestry analyses and > 0.3 for ancestry-specific  population  analyses). 
We also excluded from downstream analyses markers not present on the Illumina 
ExomeChip array 1.0, variants on the Y chromosome or the mitochondrial 
genome, indels, multiallelic variants, and problematic variants based on the Blat-
based sequence alignment analyses. Meta-analyses were carried out in parallel by 
two different analysts at two sites.
Single-variant meta-analyses. Discovery analyses. We conducted single-variant 
meta-analyses in a discovery sample of 458,927 individuals of different  ancestries 
using both additive and recessive genetic models (Extended Data Fig. 1 and 
Supplementary Tables 1–4). Significance for single-variant analyses was defined at 
an array-wide level (P <  2 ×  10−7, Bonferroni correction for 250,000 variants). The 
combined additive analyses identified 1,455 unique variants that reached array-
wide significance (P <  2 ×  10−7), including 578 non-synonymous and splice-site 
variants (Supplementary Tables 5–7). Under the additive model, we observed a 
high genomic inflation of the test statistics (for example, a λGC of 2.7 in European 
ancestry studies for common markers, Extended Data Fig. 2 and Supplementary 
Table 8), although validation results (see below) and additional sensitivity analyses 
(see below) suggested that it is consistent with polygenic inheritance as opposed 

to population stratification, cryptic relatedness, or technical artefacts (Extended 
Data Fig. 2). The majority of these 1,455 association signals (1,241; 85.3%) were 
found in the European ancestry meta-analysis (85.5% of the discovery sample size) 
(Extended Data Fig. 2). Nevertheless, we discovered eight associations within five 
loci in our all-ancestry analyses that are driven by African studies (including one 
missense variant in the growth hormone gene GH1 (rs151263636), Extended Data 
Fig. 3), three height variants found only in African studies, and one rare missense 
marker associated with height in South Asians only (Supplementary Table 7).
Genomic inflation and confounding. We observed a marked genomic inflation 
of the test statistics even after adequate control for population stratification 
(linear mixed model) arising mainly from common markers; λGC in European 
 ancestry was 1.2 and 2.7 for all and common markers, respectively (Extended Data  
Fig. 2 and Supplementary Table 8). Such inflation is expected for a highly  polygenic 
trait like height, and is consistent with our very large sample size3,33. To confirm this, 
we applied the recently developed linkage disequilibrium score regression method 
to our height ExomeChip results34, with the caveats that the method was developed 
(and tested) with > 200,000 common markers available. We restricted our  analyses 
to 15,848 common variants (MAF ≥  5%) from the European-ancestry meta- 
analysis, and matched them to pre-computed linkage disequilibrium scores for 
the European reference dataset34. The intercept of the regression of the χ2  statistics 
from the height meta-analysis on the linkage disequilibrium score  estimates 
that the inflation in the mean χ2 is due to confounding bias, such as cryptic  
relatedness or population stratification. The intercept was 1.4 (s.e.m. =  0.07), which 
is small when compared to the λGC of 2.7. Furthermore, we also confirmed that 
the linkage disequilibrium score regression intercept is estimated upward because 
of the small number of variants on the ExomeChip and the selection criteria for 
these variants (that is, known GWAS hits). The ratio statistic of (intercept −  1)/ 
(mean χ 2 −  1) is 0.067 (s.e.m. =  0.012), well within the normal range34, suggesting 
that most of the inflation (∼ 93%) observed in the height association statistics is 
due to polygenic effects (Extended Data Fig. 2).

Furthermore, to exclude the possibility that some of the observed associations 
between height and rare and low-frequency variants could be due to allele calling 
problems in the smaller studies, we performed a sensitivity meta-analysis with 
primarily European ancestry studies totalling > 5,000 participants. We found very 
concordant effect sizes, suggesting that smaller studies do not bias our results 
(Extended Data Fig. 2).
Conditional analyses. The RAREMETAL R package35 and the GCTA v1.24 (ref. 36)  
software were used to identify independent height association signals across the 
European descent meta-analysis results. RAREMETAL performs conditional 
 analyses by using covariance matrices in order to distinguish true signals from 
those driven by linkage disequilibrium at adjacent known variants. First, we 
 identified the lead variants (P <  2 ×  10−7) based on a 1-Mb window centred on 
the most significantly associated variant and performed linkage disequilibrium 
pruning (r2 <  0.3) to avoid downstream problems in the conditional analyses due to 
co-linearity. We then conditioned on the linkage disequilibrium-pruned set of lead 
variants in RAREMETAL and kept new lead signals at P <  2 ×  10−7. The process 
was repeated until no additional signal emerged below the pre-specified P-value 
threshold. The use of a 1-Mb window in RAREMETAL can obscure  dependence 
between conditional signals in adjacent intervals in regions of extended  
linkage disequilibrium. To detect such instances, we performed joint analyses 
using GCTA with the ARIC and UK ExomeChip reference panels, both of which 
 comprise > 10,000 individuals of European descent. With the exception of a 
 handful of  variants in a few genomic regions with extended linkage  disequilibrium 
(for  example, the HLA region on chromosome 6), the two pieces of software 
 identified the same independent signals (at P <  2 ×  10−7).

To discover new height variants, we conditioned the height variants found in 
our ExomeChip study on the previously published GWAS height variants3 using 
the first release of the UK Biobank imputed dataset and regression methodology 
implemented in BOLT-LMM37. Because of the difference between the sample size 
of our discovery set (n =  458,927) and the UK Biobank (first release, n =  120,084), 
we applied a threshold of Pconditional <  0.05 to declare a height variant as  independent 
in this analysis. We also explored an alternative approach based on approximate 
conditional analysis36. This latter method (SSimp) relies on summary statistics 
available from the same cohort, thus we first imputed summary statistics38 for 
exome variants, using summary statistics from a previous study3. Conversely, we 
imputed the top variants from this study3 using the summary statistics from the 
ExomeChip. Subsequently, we calculated effect sizes for each exome variant 
 conditioned on the top variants of this study3 in two ways. First, we conditioned 
the imputed summary statistics of the exome variant on the summary statistics of 
the top variants that fell within 5 Mb of the target ExomeChip variant. Second, we 
conditioned the summary statistics of the ExomeChip variant on the imputed 
summary statistics of the hits of this study3. We then selected the option that 
yielded a higher imputation quality. For poorly tagged variants (r̂ 2 <  0.8), we  simply 
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used up-sampled HapMap summary statistics for the approximate conditional 
analysis. Pairwise SNP-by-SNP correlations were estimated from the UK10K data 
(TwinsUK39 and ALSPAC40 studies, n =  3,781).
Validation of the single-variant discovery results. Several studies, totalling 252,501 
independent individuals of European ancestry, became available after the 
 completion of the discovery analyses, and were thus used for validation of our 
experiment. We validated the single-variant association results in eight studies, 
totalling 59,804 participants, genotyped on the ExomeChip using RAREMETAL31. 
We sought additional evidence for association for the top signals in two 
 independent studies in the UK (UK Biobank) and Iceland (deCODE), comprising 
120,084 and 72,613 individuals, respectively. We used the same quality control and 
analytical methodology as described above. Genotyping and study descriptions are 
provided in Supplementary Tables 1–3. For the combined analysis, we used the 
inverse-variance-weighted fixed effects meta-analysis method using METAL41. 
Significant associations were defined as those with a combined meta-analysis 
 (discovery and validation) Pcombined <  2 ×  10−7.

We considered 81 variants with suggestive association in the discovery  analyses 
(2 ×  10−7 <  Pdiscovery ≤  2 ×  10−6). Of those 81 variants, 55 reached significance 
after combining discovery and replication results based on a Pcombined <  2 ×  10−7 
(Supplementary Table 9). Furthermore, recessive modelling confirmed seven 
new independent markers with a Pcombined <  2 ×  10−7 (Supplementary Table 10). 
One of these recessive signals is due to a rare X-linked variant in the AR gene 
(rs137852591, MAF =  0.21%). Because of its frequency, we only tested hemizygous 
men (we did not identify homozygous women for the minor allele) so we cannot 
distinguish between a true recessive mode of inheritance or a sex-specific effect 
for this variant. To test the independence and integrate all height markers from 
the discovery and validation phase, we used conditional analyses and GCTA ‘joint’ 
modelling36 in the combined discovery and validation set. This resulted in the 
identification of 606 independent height variants, including 252 non-synonymous 
or splice-site variants (Supplementary Table 11). If we consider only the initial set of 
lead SNPs with P <  2 ×  10−7, we identified 561 independent variants. Of these 561 
variants (selected without the validation studies), 560 have concordant  direction 
of effect between the discovery and validation studies, and 548 variants have a 
Pvalidation <  0.05 (466 variants with Pvalidation <  8.9 ×  10−5, Bonferroni correction 
for 561 tests), suggesting a very low false discovery rate (Supplementary Table 11).
Gene-based association meta-analyses. For the gene-based analyses, we applied 
two different sets of criteria to select variants, based on coding variant annota-
tion from five prediction algorithms (PolyPhen2 HumDiv and HumVar, LRT, 
MutationTaster and SIFT)42. The mask labelled ‘broad’ included variants with a 
MAF <  0.05 that are nonsense, stop-loss, splice site, as well as missense variants 
that are annotated as damaging by at least one program mentioned above. The 
mask labelled ‘strict’ included only variants with a MAF <  0.05 that are nonsense, 
stop-loss, splice-site, as well as missense variants annotated as damaging by all 
five algorithms. We used two tests for gene-based testing, namely the SKAT43 and 
VT44 tests. Statistical significance for gene-based tests was set at a Bonferroni-
corrected threshold of P <  5 ×  10−7 (threshold for 25,000 genes and four tests). 
The gene-based discovery results were validated (same test and variants, when 
possible) in the same eight studies genotyped on the ExomeChip (n =  59,804 
 participants) that were used for the validation of the single-variant results  
(see above, and Supplementary Tables 1–3). Gene-based conditional analyses were 
performed in RAREMETAL.
Pleiotropy analyses. We accessed ExomeChip data from GIANT (BMI, waist:hip 
ratio), GLGC (total cholesterol, triglycerides, HDL-cholesterol, LDL-cholesterol),  
IBPC (systolic and diastolic blood pressure), MAGIC (glycaemic traits), 
REPROGEN (age at menarche and menopause), and DIAGRAM (type 2 diabetes) 
consortia. For coronary artery disease, we accessed 1000 Genomes Project-imputed 
GWAS data released by CARDIoGRAMplusC4D45.
Pathway analyses. DEPICT (http://www.broadinstitute.org/mpg/depict/) is a 
computational framework that uses probabilistically defined reconstituted gene 
sets to perform gene set enrichment and gene prioritization15. For a description of  
gene set reconstitution, refer to refs 15, 46. In brief, reconstitution was performed  
by extending pre-defined gene sets (such as Gene Ontology terms, canonical 
pathways, protein-protein interaction subnetworks and rodent phenotypes) with 
genes co-regulated with genes in these pre-defined gene set using large-scale 
 microarray-based transcriptomics data. In order to adapt the gene set enrichment 
part of DEPICT for ExomeChip data (https://github.com/RebeccaFine/ height- ec- 
depict), we made two principal changes. First, because DEPICT for GWAS 
 incorporates all genes within a given linkage disequilibrium block around each 
index SNP, we modified DEPICT to take as input only the gene directly impacted 
by the coding SNP. Second, we adapted the way DEPICT adjusts for confounders  
(such as gene length) by generating null ExomeChip association results using 
Swedish ExomeChip data (Malmö Diet and Cancer (MDC), All New Diabetics 
in Scania (ANDIS), and Scania Diabetes Registry (SDR) cohorts, n =  11,899) and 

randomly assigning phenotypes from a normal distribution before conducting 
association analysis (see Supplementary Information). For the gene set enrichment 
analysis of the ExomeChip data, we used significant non-synonymous variants 
statistically independent of known GWAS hits (and that were present in the null 
ExomeChip data; see Supplementary Information for details). For gene set enrich-
ment analysis of the GWAS data, we used all loci with a non-coding index SNP and 
that did not contain any of the novel ExomeChip genes. In visualizing the analysis, 
we used affinity propagation clustering47 to group the most similar reconstituted 
gene sets based on their gene memberships (see Supplementary Information). 
Within a ‘meta-gene set’, the best P value of any member gene set was used as 
representative for comparison. DEPICT for ExomeChip was written using the 
Python programming language and the code can be found at https://github.com/
RebeccaFine/height-ec-depict.

We also applied the PASCAL (http://www2.unil.ch/cbg/index.php?title= 
Pascal) pathway analysis tool16 to association summary statistics for all coding 
variants. In brief, the method derives gene-based scores (both SUM and MAX 
statistics) and subsequently tests for the over-representation of high gene scores in 
predefined  biological pathways. We used standard pathway libraries from KEGG, 
REACTOME and BIOCARTA, and also added dichotomized (Z score >  3) recon-
stituted gene sets from DEPICT15. To accurately estimate SNP-by-SNP correla-
tions even for rare variants, we used the UK10K data (TwinsUK39 and ALSPAC40 
studies, n =  3781). To separate the contribution of regulatory variants from the 
coding variants, we also applied PASCAL to association summary statistics of only 
regulatory variants (20 kb upstream, gene body excluded) from a previous study3. 
In this way, we could classify pathways driven principally by coding, regulatory 
or mixed signals.
STC2 functional experiments. For the generation of STC2 mutants (R44L and 
M86I), wild-type STC2 cDNA contained in pcDNA3.1/Myc-His(− ) (Invitrogen)23 
was used as a template. Mutagenesis was carried out using Quickchange 
(Stratagene), and all constructs were verified by sequence analysis. Recombinant 
wild-type STC2 and variants were expressed in human embryonic kidney (HEK) 
293T cells (293tsA1609neo, ATCC CRL-3216) maintained in high-glucose DMEM 
supplemented 10% fetal bovine serum, 2 mM glutamine,  nonessential amino acids, 
and gentamicin. The cells are routinely tested for mycoplasma  contamination. 
Cells (6 ×  106) were plated onto 10-cm dishes and transfected 18 h later by 
 calcium phosphate co-precipitation using 10 µ g plasmid DNA. Medium was 
collected 48 h after transfection, cleared by centrifugation, and stored at − 20 °C 
until use. Protein concentrations (58–66 nM) were determined by TRIFMA using 
 antibodies described previously23. PAPP-A was expressed stably in HEK293T cells 
as  previously reported48. Expressed levels of PAPP-A (27.5 nM) were determined 
by a commercial ELISA (AL-101, Ansh Labs).

Culture supernatants containing wild-type STC2 or variants were adjusted 
to 58 nM, added an equal volume of culture supernatant containing PAPP-A 
 corresponding to a 2.1-fold molar excess, and incubated at 37 °C. Samples were 
taken at 1, 2, 4, 6, 8, 16, and 24 h and stored at −20 °C.

Specific proteolytic cleavage of 125I-labeled IGFBP-4 is described in detail 
 elsewhere49. In brief, the PAPP-A–STC2 complex mixtures were diluted (1:190) 
to a concentration of 72.5 pM PAPP-A and mixed with pre-incubated 125I-IGFBP4 
(10 nM) and IGF-1 (100 nM) in 50 mM Tris-HCl, 100 mM NaCl, 1 mM CaCl2. 
Following 1 h incubation at 37 °C, reactions were terminated by the addition 
of SDS–PAGE sample buffer supplemented with 25 mM EDTA. Substrate and  
co- migrating cleavage products were separated by 12% non-reducing SDS–
PAGE and visualized by autoradiography using a storage phosphor screen  
(GE Healthcare) and a Typhoon imaging system (GE Healthcare). Band intensities 
were quantified using ImageQuant TL 8.1 software (GE Healthcare).

STC2 and covalent complexes between STC2 and PAPP-A were blotted onto 
PVDF membranes (Millipore) following separation by 3–8% SDS–PAGE. The 
membranes were blocked with 2% Tween-20, and equilibrated in 50 mM Tris-
HCl, 500 mM NaCl, 0.1% Tween-20; pH 9 (TST). For STC2, the membranes were 
incubated with goat polyclonal anti-STC2 (R&D systems, AF2830) at 0.5 µ g ml−1 
in TST supplemented with 2% skimmed milk for 1 h at 20 °C. For PAPP-A–STC2 
complexes, the membranes were incubated with rabbit polyclonal anti-PAPP-A50 
at 0.63 µ g ml−1 in TST supplemented with 2% skimmed milk for 16 h at 20 °C. 
Membranes were washed with TST and subsequently incubated with polyclonal 
rabbit anti-goat IgG[en rule]horseradish peroxidase (DAKO, P0449) or polyclonal 
swine anti-rabbit IgG[en rule]horseradish peroxidase (DAKO, P0217), respec-
tively, diluted 1:2,000 in TST supplemented with 2% skimmed milk for 1 h at 
20 °C. Following washing with TST, membranes were developed using enhanced 
chemiluminescence (ECL Prime, GE Healthcare). Images were captured using an 
ImageQuant LAS 4000 instrument (GE Healthcare).
Data availability. Summary genetic association results are available on the GIANT 
website (http://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_
consortium).
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Extended Data Figure 1 | Flowchart of the GIANT ExomeChip height study design. 
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Extended Data Figure 2 | Height ExomeChip association results.  
a, Quantile–quantile plot of ExomeChip variants and their association to 
adult height under an additive genetic model in individuals of European 
ancestry. We stratified results on the basis of allele frequency. b, Manhattan 
plot of all ExomeChip variants and their association to adult height under 
an additive genetic model in individuals of European ancestry with a 
focus on the 553 independent SNPs, of which 469 have a MAF >  5% 
(grey), 55 have MAF between 1–5% (green), and 29 have a MAF <  1% 
(blue). c, Linkage disequilibrium (LD) score regression analysis for the 
height association results in European-ancestry studies. In the plot, each 
point represents a linkage disequilibrium score quantile, where the x axis 
of the point is the mean linkage disequilibrium score of variants in that 

quantile and the y axis is the mean χ2 statistic of variants in that quantile. 
The linkage disequilibrium score regression slope of the black line is 
calculated using equation 1 in ref. 34, which is estimated upwards owing to 
the small number of common variants (n =  15,848) and the design of the 
ExomeChip. The linkage disequilibrium score regression intercept is  
1.4, the λGC is 2.7, the mean χ2 is 7.0, and the ratio statistic of 
(intercept −  1)/(mean χ2 −  1) is 0.067 (s.e.m. =  0.012). d, Scatter plot 
comparison of the effect sizes for all variants that reached significance 
in the European-ancestry-discovery results (n =  381,625) and results 
including only studies with sample sizes of more than 5,000 individuals 
(n =  241,453).
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Extended Data Figure 3 | Height ExomeChip association results in African-ancestry populations. Among the all-ancestry results, we found eight 
variants for which the genetic association with height is mostly driven by individuals of African ancestry. The MAF of these variants is < 1%  
(or monomorphic) in all ancestries except African ancestry. In individuals of African ancestry, the variants had allele frequencies between 9 and 40%.
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Extended Data Figure 4 | Concordance between direct conditional 
effect sizes using UK Biobank (x axis) and conditional analysis 
performed using a combination of imputation-based methodology 
and approximate conditional analysis (SSimp, y axis). The Pearson’s 

correlation coefficient is r =  0.85. The dashed line indicates the identity 
line. The 95% confidence interval is indicated in both directions. Red, 
SNPs with Pcond >  0.05 in the UK Biobank; green, SNPs with Pcond ≤  0.05  
in the UK Biobank.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



ARTICLERESEARCH

Extended Data Figure 5 | Heritability estimated for all known height 
variants in the first release of the UK Biobank dataset. a, We observed 
a weak but significant positive trend between MAF and heritability 
(P =  0.012). b, Average heritability explained per variant when stratifying 

the analyses by allele frequency or genomic annotation. For heritability 
estimations in UKBB, variants were pruned to r2 <  0.2 in the 1000 
Genomes Project dataset, and the heritability figures are based on 
h2 =  80% for height.
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Extended Data Figure 6 | Comparison of DEPICT gene set enrichment 
results based on coding variation from ExomeChip or non-coding 
variation from GWAS data.  The x axis indicates the P value for 
enrichment of a given gene set using DEPICT adapted for ExomeChip 
(EC) data, where the input to DEPICT is the genes implicated by coding 
ExomeChip variants that are independent of known GWAS signals. The 
y axis indicates the P value for gene set enrichment using DEPICT, using 
as input the GWAS loci that do not overlap the coding signals. Each point 

represents a meta-gene set and the best P value for any gene set within 
the meta-gene set is shown. Only significant (false discovery rate <  0.01) 
gene set enrichment results are plotted. Colours correspond to whether 
the meta-gene set was significant for ExomeChip only (blue), GWAS 
only (green), both but more significant for ExomeChip (purple), or both 
but more significant for GWAS (orange), and the most significant gene 
sets within each category are labelled. A line is drawn at x =  y for ease of 
comparison.
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Extended Data Figure 7 | Heat map showing entire DEPICT gene set 
enrichment results. This figure is analagous to Fig. 2. For any given 
square, the colour indicates how strongly the corresponding gene (shown 
on the x axis) is predicted to belong to the reconstituted gene set (y axis). 
This value is based on the Z score of the gene for gene set inclusion in 
DEPICT’s reconstituted gene sets, where red indicates a higher Z score 
and blue indicates a lower one. The proteoglycan-binding pathway was 
uniquely implicated by coding variants (as opposed to common variants) 
by both DEPICT and the Pascal method. To visually reduce redundancy 
and increase clarity, we chose one representative ‘meta-gene set’ for 
each group of highly correlated gene sets based on affinity propagation 
clustering (see Methods and Supplementary Information). Heat map 
intensity and DEPICT P values correspond to the most significantly 

enriched gene set within the meta-gene set; meta-gene sets are listed with 
their database source. Annotations for the genes indicate whether the 
gene has OMIM annotation as underlying a disorder of skeletal growth 
(black and grey) and the MAF of the significant ExomeChip variant 
(shades of blue; if multiple variants, the lowest-frequency variant was 
kept). Annotations for the gene sets indicate if the gene set was also found 
significant for ExomeChip by the Pascal method (yellow and grey) and 
if the gene set was found significant by DEPICT for ExomeChip only or 
for both ExomeChip and GWAS (purple and green). GO, Gene Ontology; 
KEGG, Kyoto encyclopaedia of genes and genomes; MP, mouse phenotype 
in the Mouse Genetics Initiative; PPI, protein–protein interaction in the 
InWeb database.
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Extended Data Figure 8 | Coding height variants are pleiotropic.  
a, b, Heat maps showing associations of the height variants to other 
complex traits; –log10(P values) are oriented with beta effect direction for 
the alternate allele, white are missing values, yellow are non-significant 
(P >  0.05), green to blue shading for hits with positive beta in the other 
trait and P values between 0.05 and < 2 ×  10−7 and orange to red shading 
for hits with negative beta in the other trait and P values between 0.05 

and < 2 ×  10−7. Short and tall labels are given for the minor alleles. 
Clustering is done by the complete linkage method with Euclidean 
distance measure for the loci. Clusters highlight SNPs that are more 
significantly associated with the same set of traits. a shows variants for 
which the minor allele is the height-decreasing allele. b shows variants for 
which the minor allele is the height-increasing allele.
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Extended Data Table 1 | Rare variants associated with adult height

Table shows 32 missense or splice site variants with a MAF <  1% in European-ancestry participants that have Pcombined <  2 ×  10−7. The direction of the effect (beta, in units of s.d.) and effect allele  
frequency (AF) is given for the alternate (Alt) allele. Genomic coordinates are on build 37 of the human genome. For each variant, we provide the most severe annotation using the ENSEMBL Variant 
Effect Predictor (VEP) tool. N, sample size; Ref, reference allele; SE, s.e.m.
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Extended Data Table 2 | Low-frequency variants associated with adult height

Table shows 59 variants (51 missense or nonsense) with minor allele frequency between 1 and 5% in participants of European ancestry that have Pcombined <  2 ×  10−7. For TTN rs16866412 and NOL8 
rs921122, the association is significant (P <  2 ×  10−7) upon conditional analysis. The direction of the effect (beta, s.d. units) and effect allele frequency (AF) is given for the alternate (Alt) allele. For each 
variant, we provide the most severe annotation using the ENSEMBL Variant Effect Predictor (VEP) tool. N, sample size; Ref, reference allele; SE, s.e.m.
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